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“Manifold” in Data Science

High-dimensional analogue of 2 dimensional surface in RN

(Image from Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová)
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Classification Dataset and Neural Network

Classification with two classes
f = σ2 ◦ L2 ◦ σ1 ◦ L1

Network models gain tremendous success in describing datasets
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Linear Logical Function
Motivated from Neural Network.
Example: Directed graph G & Set of affine maps L = {lv1 , lv2 , lv3}, D ⊂ R2
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f : D → {t1, t2, t3} is a function defined by G and L.
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Linear Logical Function

Measurable set D ⊂ Rn, Finite set T .

Directed finite graph G without cycle

Affine maps

L = {lv : v is a vertex with more than one outgoing arrows}

Definition

fG ,L : D → T is a linear logical function of (G , L) if lv ∈ L are affine linear
functions whose chambers in D are one-to-one corresponding to the
outgoing arrows of v .
(G , L) is called a linear logical graph.
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Linear logical function : Example

f = σ ◦ L2 ◦ s ◦ L1 where

L1 : Rn → R2 is affine map and s is a component-wise step function.

L2 : R2 → R3 is affine map and σ is the index-max map.
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f is a linear logical function with the above graph G and L = {L1}.
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Fuzzy linear logical function : Example
f = σ ◦ L2 ◦ s ◦ L1 : Sn → S3 with SoftMax σ and ReLU s.

G is a finite directed graph that has no oriented cycle with exactily
one source vertex and target vertex t.
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Arrow maps pa : Ps(a) → Pt(a) for each arrow a, and affine map lv
whose chambers in Pv are one-to-one corresponding to the outgoing
arrows of v .
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Lv0 = L1 and l is the restricted affine linear map on chambers made
by Lv0 and the ReLU activation s.
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Fuzzy linear logical function

G is a finite directed graph that has no oriented cycle with exactily
one source vertex and target vertices t1, . . . , tK .

Each vertex v of G is equipped with a product of standard simplices
Pv , where simplex is a set of the form {x ∈ Rd+1 :

∑
xi = 1}.

Domain D is a subset of Pv0 .

Each arrow a is equipped with a continuous function

pa : Ps(a) → Pt(a)

where s(a), t(a) denote the source and target vertices respectively.

Each vertex v that has more than one outgoing arrows is equipped
with affine map lv whose chambers in Pv are one-to-one
corresponding to the outgoing arrows of v .

Given x ∈ D, L and pa determine a path to a target, and f(G ,L,P,p)(x) is
defined by the composition of arrow maps along the path.
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Tropical limits
Introduce formal parameter T to logistic functions.

lim
T→∞

1

1 + T−x
=

{
1 (x > 0)

0 (x < 0)

SoftMax(x)
T→e←−−−

(
T−xk∑
i T

−xi

)
T→0+−−−−→ Argmax(x)
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Universality of Linear logical function

D ⊂ RN with µ(D) <∞, where µ is the Lebesgue measure.

T is finite

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function f : D → T, we have a linear
logical function that approximates to f .

Corollary

There exists a family L of linear logical functions Li : Di → T, where
Di ⊂ D and Li ≡ f |Di

, such that D \
⋃
i
Di is measure zero set.
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Fuzzy linear logical function and fuzzy linear logifold

Definition
A fuzzy linear logifold is a tuple (X ,P,U), where (X ,U) be a logifold and

U is a collection of tuples (ρi , ϕi , fi )

ρi : X → [0, 1] describe fuzzy subsets of X with
∑

i ρi ≤ 1X

Ui = {x ∈ X : ρi (x) > 0} be the support of ρi

In classification problems,

X = Rn × T

P : X → [0, 1] describes how likely an element of Rn × T is classified
as ‘yes’

ρi can be ‘generalization performance’, or ‘constant’.
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Example of logifold

f : (0, 1]→ {0, 1} be a function defined as

f (x) =
∞∑
n=0

(
(−1)n + 1

2

)
IEn(x)

where En = (1− 2−n, 1− 2−n−1].
The graph of f ⊂ [0, 1)× {0, 1}

with countably many ‘jumps’ or ‘discontinuities’ near at x = 0.
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In classification problems, X = Rn × T and each model gi : X → T with
Ui = X . Define Gi : X × T → [0, 1] by g such that Gi (x , t) = (gi (x))t .
Let N be the total number of classifiers.

If ρi =
1
N for any i , then P : X × T → [0, 1] is defined by

P(x , t) =
∑

ρi (x)1ti,0(x)(t)

, where ti ,0(x) = argmaxGi (x , t) denoting ‘the answer of gi ’, and
therefore the system employs majority voting.

If ρi =
1
N for any i , then P : X × T → [0, 1] is defined by

P(x , t) =
∑

Gi (x , t)

, which is simple average.

If ρi (x) =
max gi (x)

N then P(x , t) =
∑

ρi (x)Gi (x , t) be the weighted
average.
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As our logifold formulation does not force to have X and T as
domain/codomain of classifier, we allow classifier to have more flexibility
in its target.
For instance, our classification problem is classifyting instances in X to
{1, 2, 3, 4, 5}, and we have models g1, . . . , g7 such that

Models Targets

g1 {1, 2, 3}, {4, 5}
g2, g3 {1, 2, 3, 4, 5}
g4 {1, 2, 3}
g5 {1, 3}
g6 {2, 3}
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As they can have various target, we make tree of targets.
For instance, with {1, 2, 3, 4, 5}, {1, 2, 3}, {1, 3}, {2, 3}, we have the
following target tree.

{1, 2, 3, 4, 5}

{1, 2, 3} {4, 5}

{1, 3} {2, 3}
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On validation dataset, define first certain domain of g under the certainty
threshold α.

Certainty = max g(x)

Certain domain = {certainty > α}, α = threshold

Then compute accuracy (global, and in each target) of g .
For instance, g2 has following fuzzy domain:

certainty threshold Accuracy Accuracy in each target

0 0.6 (0.7,0.8,0.45,0.5,0.45)
0.8 0.7 (0.7,0.9,0.5,0.7,0.6)
0.95 0.8 (0.8,0.9,0.75,0.8,0.75)
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{1, 2, 3, 4, 5}

{1, 2, 3} {4, 5}

{1, 3} {2, 3}

For a given instance x , we can compute weighted voting for x at node
{1, 2, 3, 4, 5} according to the fuzzy domain of g1, g2, g3 in each
target 1, 2, 3, 4, 5.

If answer for 1, 2, 3 is dominant, then we pass it to {1, 2, 3} node. In
this way, we have unique path in the target tree for each instance.

On validation dataset, we can compute which (sub-)path and
certainty threshold are optimal for best accuracy in each model.
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Experimental Result 1

Dataset : CIFAR10
Six Simple CNN structure models trained on CIFAR10 (56.45% in average)
ResNet20 structure model trained on CIFAR10 (85.96%)
Simple average : 62.55%
Majority voting provides 58.72%.
Our logifold formulation : 84.86%
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Experimental Result 2

dataset : CIFAR10, MNIST, Fashion MNIST (resized to 32*32*3 pixels)

Filters are models classifying coarse targets. It only classify given data
into three classes ; CIFAR10, MNIST, and Fashion MNIST.

Models only classifying either CIFAR10, MNIST, or Fashion MNIST.

Single model classifying 30 classes : 76.41% in average.
Simple average of models classifying 30 classes : 82.35%
Our logifold formulation : 94.94%.
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