

A Logifold structure of measure spaces

Inkee Jung ¹ Siu-Cheong Lau ²

¹Mathematics PhD student
Boston University

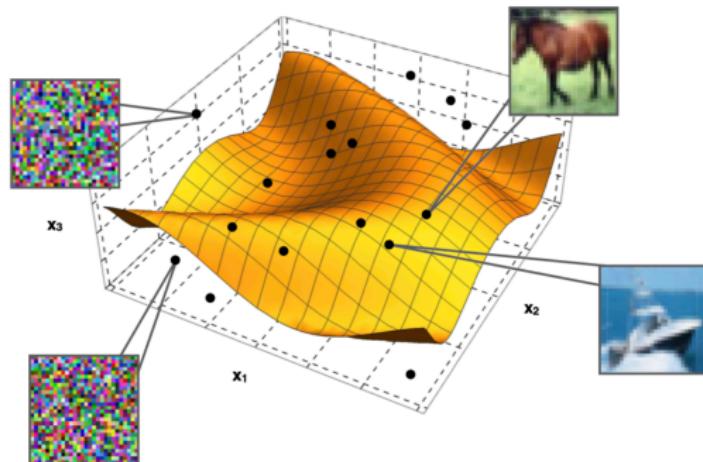
²Faculty of Mathematics Department
Boston University

December 18

2024 IMS International Conference on Statistics and Data Science
16 - 19 December 2024, Nice, France

“Manifold” in Data Science

High-dimensional analogue of 2 dimensional surface in \mathbb{R}^N

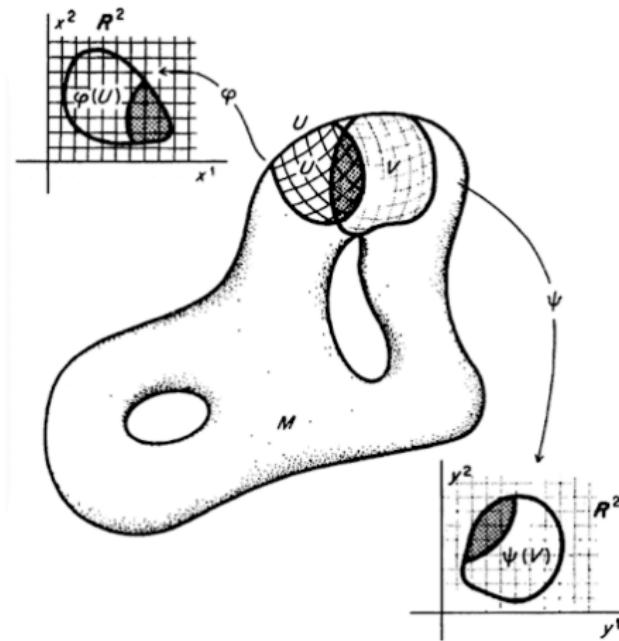


(Image from Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová)

Manifold : Local-to-Global Principle

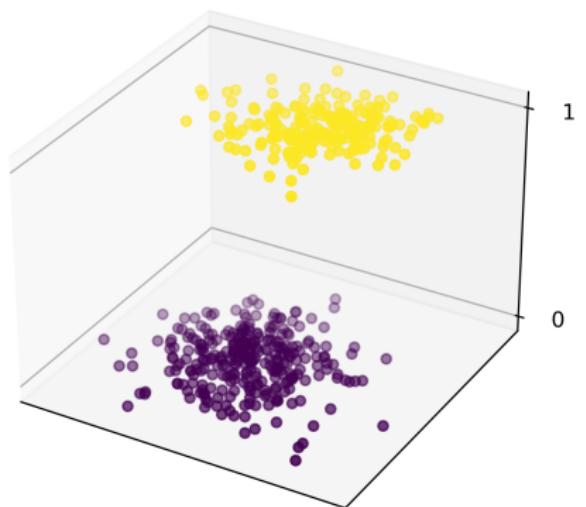
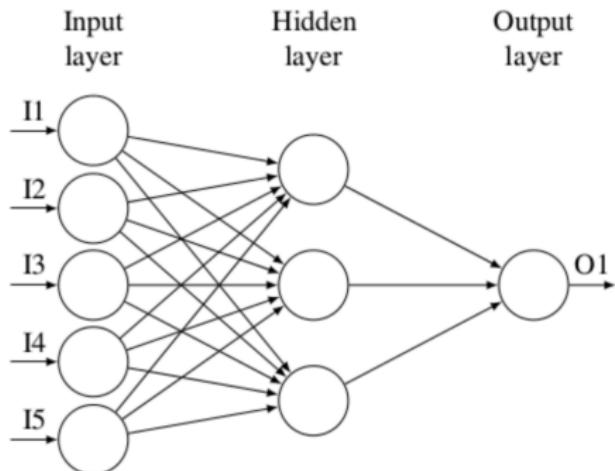
Locally Euclidean Space (M, \mathcal{U}) with collection of local data $\mathcal{U} = \{(U_\alpha, \Phi_\alpha)\}$

- Modeling Spacetime by Einstein's theory of relativity
- Local-to-Global principle



(Figure based on W. M. Boothby)

Dataset and Neural Network



$$f = \sigma_2 \circ L_2 \circ \sigma_1 \circ L_1$$

Classification with two classes

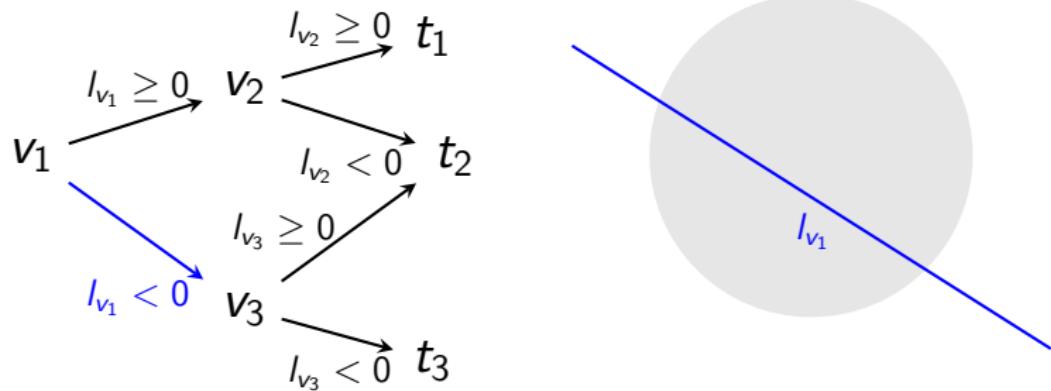
- Network models gain tremendous success in describing datasets

Linear Logical Function

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$

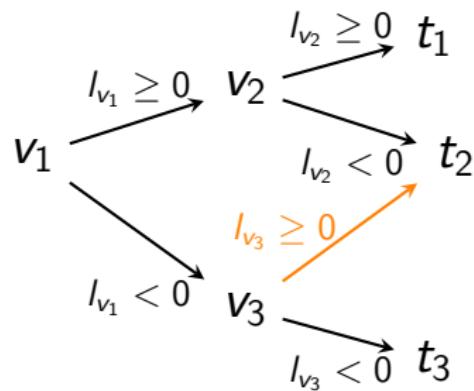
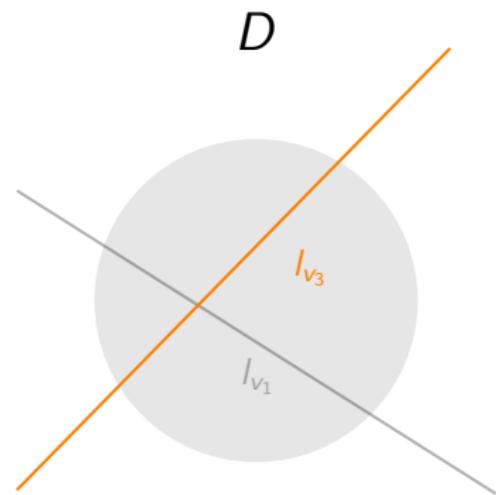
D



Linear Logical Function

Motivated from Neural Network.

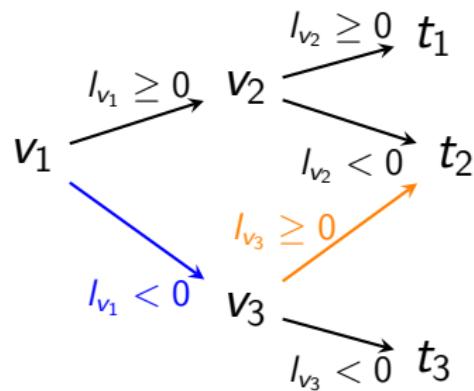
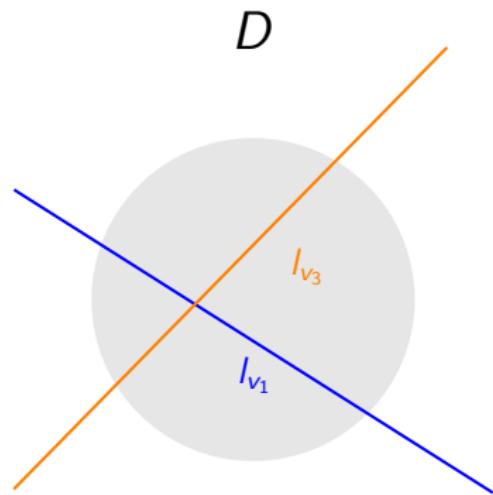
Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$



Linear Logical Function

Motivated from Neural Network.

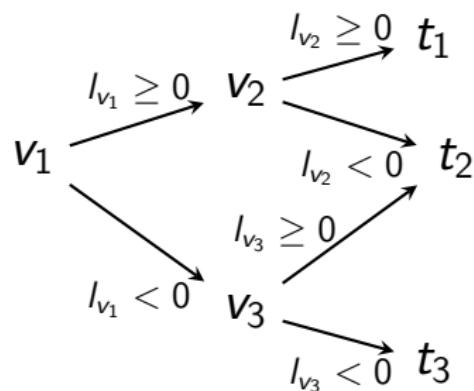
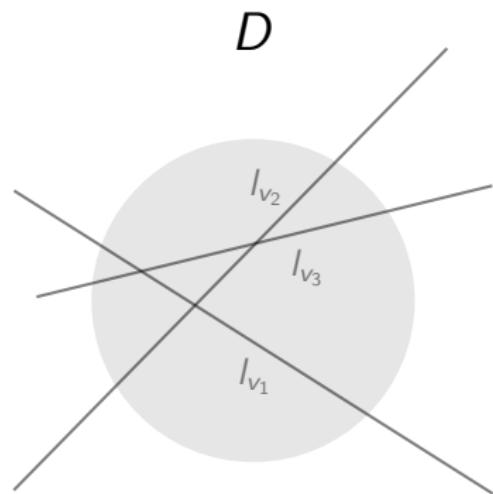
Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$



Linear Logical Function

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$



$f : D \rightarrow \{t_1, t_2, t_3\}$ is a function defined by G and L .

Definition of Linear Logical Function

- Measurable set $D \subset \mathbb{R}^n$, Finite set T .
- Directed finite graph G without cycle
- Affine maps

$$L = \{l_v : v \text{ is a vertex with more than one outgoing arrows}\}$$

Definition

$f_{G,L} : D \rightarrow T$ is a linear logical function of (G, L) if $l_v \in L$ are affine linear functions whose chambers in D are one-to-one corresponding to the outgoing arrows of v .

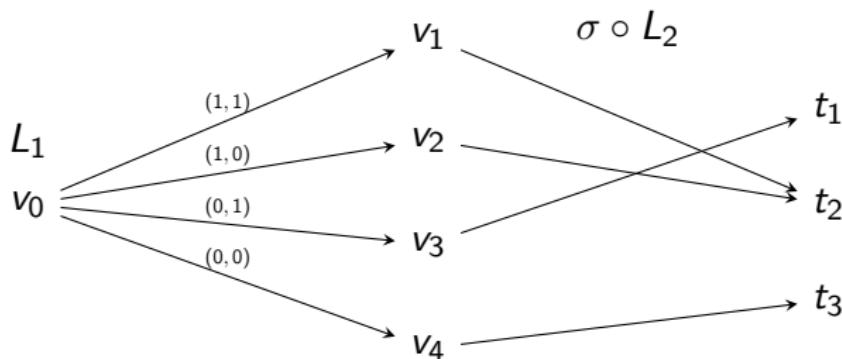
(G, L) is called a linear logical graph.

Linear logical function : Example

Activation map : Step function

$f = \sigma \circ L_2 \circ s \circ L_1$ where

- $L_1 : \mathbb{R}^n \rightarrow \mathbb{R}^2$ is affine map and s is a component-wise step function.
- $L_2 : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is affine map and σ is the index-max map.

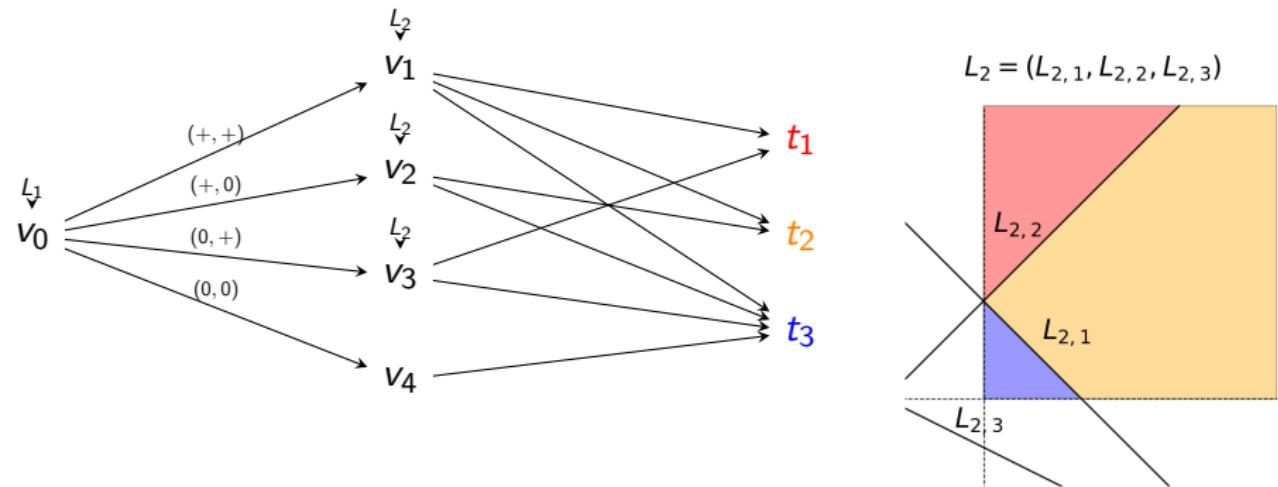


f is a linear logical function with the above graph G and $L = \{L_{v_0}\}$.

Linear logical function : Example

Activation map : ReLu

$f = \sigma \circ L_2 \circ s \circ L_1$, where L_1, L_2 are affine maps and s is a component-wise ReLu function defined as $\text{ReLu}(x) = \max(0, x)$.

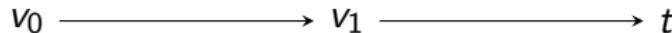


f is a linear logical function with the above graph G and $L = \{L_{v_0}, L_{v_1}, L_{v_2}, L_{v_3}\}$.

Fuzzy linear logical function : Example

$f = \sigma \circ L_2 \circ s \circ L_1 : S^n \rightarrow S^3$ with SoftMax σ and Sigmoid s , where
 $\text{Softmax}(x) = (e^{x_k} / \sum_i e^{x_i})_i$, $\text{Sigmoid}(x) = (1 + e^{-x})^{-1}$.

- G is a finite directed graph that has no oriented cycle with exactly one source vertex and target vertex t .



Fuzzy linear logical function : Example

- Each vertex v of G is equipped with a product of standard simplices P_v , with domain $D = P_{v_0}$.

$$\begin{array}{ccccc} P_{v_0} & & P_{v_1} & & P_t \\ | & & | & & | \\ v_0 & \xrightarrow{\hspace{2cm}} & v_1 & \xrightarrow{\hspace{2cm}} & t \end{array}$$

$$P_{v_0} = P_{v_1} = S^n, P_t = S^3.$$

$$S^n = \left\{ (x_0, \dots, x_n) \in \mathbb{R}^{n+1} : \sum x_i = 1, x_i \geq 0 \right\}.$$

- $p_{a_1} = s \circ L_1 : P_{v_0} \rightarrow P_{v_1}, p_{a_2} = \sigma \circ L_2 : P_{v_1} \rightarrow P_t$

$$\begin{array}{ccccc} P_{v_0} & & P_{v_1} & & P_t \\ | & & | & & | \\ v_0 & \xrightarrow{a_1} & v_1 & \xrightarrow{a_2} & t \end{array}$$

mapping to the next 'state'.

Fuzzy linear logical function : Definition

- G is a finite directed graph that has no oriented cycle with exactly one source vertex and target vertices t_1, \dots, t_K .
- Each vertex v of G is equipped with a product of standard simplices P_v . Domain D is a subset of P_{v_0} .
- Each arrow a is equipped with a continuous function

$$p_a : P_{s(a)} \rightarrow P_{t(a)}$$

where $s(a), t(a)$ denote the source and target vertices of the arrow a respectively.

- Each vertex v that has more than one outgoing arrows is equipped with affine map l_v whose chambers in P_v are one-to-one corresponding to the outgoing arrows of v .

Given $x \in D$, L and p_a determine a path to a target, and $f_{(G,L,P,p)}(x)$ is defined by the composition of arrow maps along the path.

Universality of Linear logical function

- $D \subset \mathbb{R}^N$ with $\mu(D) < \infty$, where μ is the Lebesgue measure.
- T is finite

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f : D \rightarrow T$, we have a linear logical function that approximates to f .

Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f : D \rightarrow T$, we have a linear logical function that approximates to f .

Proof of idea

Definition (Lou van den Dries)

A structure S on the real line consists of a boolean algebra S_n of subsets of \mathbb{R}^n for each $n = 0, 1, \dots$, such that

- $\{x \in \mathbb{R}^n : x_i = x_j\}, 1 \leq i < j \leq n \in S_n$.
- Closed under Cartesian product.
- Closed under projection ($A \in S_{n+1} \rightarrow \pi(A) \in S_n$).
- $\{(x, y) \in \mathbb{R}^2 : x < y\} \in S_2$.

Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f : D \rightarrow T$, we have a linear logical function that approximates to f .

Proof of idea

For instance, let ϕ and ψ be 1st order logic formulas on $(x, y) \in X \times Y$.

$$\Phi := \{(x, y) \in X \times Y : \phi(x, y)\}, \Psi := \{(x, y) \in X \times Y : \psi(x, y)\}.$$

$\phi \wedge \psi$ and $\phi \vee \psi$ define $\Phi \cap \Psi$ and $\Phi \cup \Psi$.

$\exists x \phi(x, y)$ defines $\pi_Y(\Phi)$.

$\forall x \phi(x, y)$ defines $Y \setminus \pi_Y(X \times Y \setminus \Phi)$.

Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f : D \rightarrow T$, we have a linear logical function that approximates to f .

Proof of idea

semilinear set of \mathbb{R}^n : Finite unions of

$$\{x \in \mathbb{R}^n : f_1(x) = \dots = f_k(x), g_1(x) > 0, \dots, g_l(x) > 0\}$$

with affines f_i and g_j .

Semilinear sets form o-minimal structure, in which every definable subset is a finite union of intervals and points.

Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f : D \rightarrow T$, we have a linear logical function that approximates to f .

Proof of idea

Lemma

A function $f : D \rightarrow T$, where $D \subset \mathbb{R}^n$ and T is a finite set, is semilinear if and only if it is a linear logical function.

Using this lemma, we can approximate f with linear logical functions by constructing approximations of semilinear functions.

Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f : D \rightarrow T$, we have a linear logical function that approximates to f .

Corollary

There exists a family \mathcal{L} of linear logical functions $L_i : D_i \rightarrow T$, where $D_i \subset D$ and $L_i \equiv f|_{D_i}$, such that $D \setminus \bigcup_i D_i$ is measure zero set.

Fuzzy linear logifold

Definition

A fuzzy linear logifold is a tuple $(X, \mathcal{P}, \mathcal{U})$, where (X, \mathcal{U}) be a logifold and

- \mathcal{U} is a collection of tuples (ρ_i, ϕ_i, f_i)
- $\rho_i : X \rightarrow [0, 1]$ describe fuzzy subsets of X with $\sum_i \rho_i \leq 1_X$
- $U_i = \{x \in X : \rho_i(x) > 0\}$ be the support of ρ_i

In classification problems,

- $X = \mathbb{R}^n \times T$
- $\mathcal{P} : X \rightarrow [0, 1]$ describes how likely an element of $\mathbb{R}^n \times T$ is classified as 'yes'
- ρ_i can be 'generalization performance', or 'constant'.

Example of logifold

$f : (0, 1] \rightarrow \{0, 1\}$ be a function defined as

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{(-1)^n + 1}{2} \right) I_{E_n}(x)$$

where $E_n = (1 - 2^{-n}, 1 - 2^{-n-1}]$.

The graph of $f \subset [0, 1) \times \{0, 1\}$

with countably many 'jumps' or 'discontinuities' near at $x = 0$.

Practical Aspect : Ensemble Machine Learning

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \rightarrow T$ with $U_i = X$. Define $G_i : X \times T \rightarrow [0, 1]$ by g such that $G_i(x, t) = (g_i(x))_t$. Let N be the total number of classifiers.

- If $\rho_i = \frac{1}{N}$ for any i , then $P : X \times T \rightarrow [0, 1]$ is defined by

$$P(x, t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x, t)$ denoting 'the answer of g_i ', and therefore the system employs **majority voting**.

Practical Aspect : Ensemble Machine Learning

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \rightarrow T$ with $U_i = X$. Define $G_i : X \times T \rightarrow [0, 1]$ by g such that $G_i(x, t) = (g_i(x))_t$. Let N be the total number of classifiers.

- If $\rho_i = \frac{1}{N}$ for any i , then $P : X \times T \rightarrow [0, 1]$ is defined by

$$P(x, t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x, t)$ denoting 'the answer of g_i ', and therefore the system employs **majority voting**.

- If $\rho_i = \frac{1}{N}$ for any i , then $P : X \times T \rightarrow [0, 1]$ is defined by

$$P(x, t) = \sum G_i(x, t)$$

, which is **simple average**.

Practical Aspect : Ensemble Machine Learning

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \rightarrow T$ with $U_i = X$. Define $G_i : X \times T \rightarrow [0, 1]$ by g such that $G_i(x, t) = (g_i(x))_t$. Let N be the total number of classifiers.

- If $\rho_i = \frac{1}{N}$ for any i , then $P : X \times T \rightarrow [0, 1]$ is defined by

$$P(x, t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x, t)$ denoting 'the answer of g_i ', and therefore the system employs **majority voting**.

- If $\rho_i = \frac{1}{N}$ for any i , then $P : X \times T \rightarrow [0, 1]$ is defined by

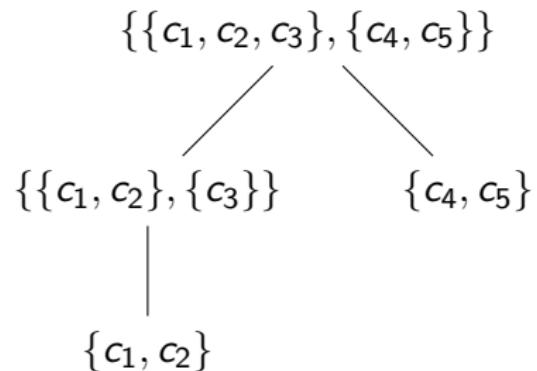
$$P(x, t) = \sum G_i(x, t)$$

, which is **simple average**.

- If $\rho_i(x) = \frac{\max g_i(x)}{N}$ then $P(x, t) = \sum \rho_i(x) G_i(x, t)$ be **the weighted average**.

Practical Aspect : Flexible target and Fuzzy Domain

Models	Targets
g_1	$\{\{c_1, c_2, c_3\}, \{c_4, c_5\}\}$
g_2	$\{\{c_1, c_2\}, \{c_3\}\}$
g_3	$\{c_1, c_2\}$
g_4	$\{c_4, c_5\}$



$$\text{Certainty} = \max g(x)$$

$$\text{Certain domain} = \{\text{certainty} > \alpha\}, \quad \alpha = \text{threshold}$$

Then compute the precisions for each target of g on *the Certain domain*, which contribute to $\rho_i(x)$ along with the *target tree*.

Experimental Result 1

Dataset : CIFAR10

Six Simple CNN structure models trained on CIFAR10 (56.45% in average)

ResNet20 structure model trained on CIFAR10 (85.96%)

Simple average : 62.55%

Majority voting provides 58.72%.

Our logifold formulation : 84.86%

Experimental Result 2

dataset : CIFAR10, MNIST, Fashion MNIST (resized to 32*32*3 pixels)

- Filters are models classifying coarse targets. It only classify given data into three classes ; CIFAR10, MNIST, and Fashion MNIST.
- Models only classifying either CIFAR10, MNIST, or Fashion MNIST.

Single model classifying 30 classes : 76.41% in average.

Simple average of models classifying 30 classes : 82.35%

Our logifold formulation : 94.94%.