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“Manifold” in Data Science

High-dimensional analogue of 2 dimensional surface in RN

(Image from Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová)
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Manifold : Local-to-Global Principle
Locally Euclidean Space (M,U) with collection of local data U = {(Uα,Φα)}

Modeling Spacetime by Einstein’s theory of relativity

Local-to-Global principle

(Figure based on W. M. Boothby)
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Dataset and Neural Network

Classification with two classes
f = σ2 ◦ L2 ◦ σ1 ◦ L1

Network models gain tremendous success in describing datasets
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Linear Logical Function
Motivated from Neural Network.
Example: Directed graph G & Set of affine maps L = {lv1 , lv2 , lv3}, D ⊂ R2
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Motivated from Neural Network.
Example: Directed graph G & Set of affine maps L = {lv1 , lv2 , lv3}, D ⊂ R2
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f : D → {t1, t2, t3} is a function defined by G and L.
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Definition of Linear Logical Function

Measurable set D ⊂ Rn, Finite set T .

Directed finite graph G without cycle

Affine maps

L = {lv : v is a vertex with more than one outgoing arrows}

Definition

fG ,L : D → T is a linear logical function of (G , L) if lv ∈ L are affine linear
functions whose chambers in D are one-to-one corresponding to the
outgoing arrows of v .
(G , L) is called a linear logical graph.
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Linear logical function : Example
Activation map : Step function

f = σ ◦ L2 ◦ s ◦ L1 where

L1 : Rn → R2 is affine map and s is a component-wise step function.

L2 : R2 → R3 is affine map and σ is the index-max map.
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f is a linear logical function with the above graph G and L = {Lv0}.
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Linear logical function : Example
Activation map : ReLu

f = σ ◦ L2 ◦ s ◦ L1, where L1, L2 are affine maps and s is a component-wise
ReLu function defined as ReLu(x) = max(0, x).
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f is a linear logical function with the above graph G and
L = {Lv0 , Lv1 , Lv2 , Lv3}.
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Fuzzy linear logical function : Example
f = σ ◦ L2 ◦ s ◦ L1 : Sn → S3 with SoftMax σ and Sigmoid s, where
Softmax(x) = (exk/

∑
i e

xi )i , Sigmoid(x) = (1 + e−x)
−1
.

G is a finite directed graph that has no oriented cycle with exactily
one source vertex and target vertex t.

v0 v1 t
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f = σ ◦ L2 ◦ s ◦ L1 : Sn → S3 with SoftMax σ and Sigmoid s, where
Softmax(x) = (exk/

∑
i e

xi )i , Sigmoid(x) = (1 + e−x)
−1
.

Each vertex v of G is equipped with a product of standard simplices
Pv , with domain D = Pv0 .
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Sn =
{
(x0, . . . , xn) ∈ Rn+1 :

∑
xi = 1, xi ≥ 0

}
.

pa1 = s ◦ L1 : Pv0 → Pv1 , pa2 = σ ◦ L2 : Pv1 → Pt
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mapping to the next ‘state’.
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Fuzzy linear logical function : Definition

G is a finite directed graph that has no oriented cycle with exactily
one source vertex and target vertices t1, . . . , tK .

Each vertex v of G is equipped with a product of standard simplices
Pv . Domain D is a subset of Pv0 .

Each arrow a is equipped with a continuous function

pa : Ps(a) → Pt(a)

where s(a), t(a) denote the source and target vertices of the arrow a
respectively.

Each vertex v that has more than one outgoing arrows is equipped
with affine map lv whose chambers in Pv are one-to-one
corresponding to the outgoing arrows of v .

Given x ∈ D, L and pa determine a path to a target, and f(G ,L,P,p)(x) is
defined by the composition of arrow maps along the path.
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Universality of Linear logical function

D ⊂ RN with µ(D) <∞, where µ is the Lebesgue measure.

T is finite

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function f : D → T, we have a linear
logical function that approximates to f .

Proof of idea

Corollary

There exists a family L of linear logical functions Li : Di → T, where
Di ⊂ D and Li ≡ f |Di

, such that D \
⋃
i
Di is measure zero set.
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Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function f : D → T, we have a linear
logical function that approximates to f .

Proof of idea

Definition (Lou van den Dries)

A structure S on the real line consists of a boolean algebra Sn of subsets
of Rn for each n = 0, 1, . . . , such that

{x ∈ Rn : xi = xj}, 1 ≤ i < j ≤ n ∈ Sn.

Closed under Cartesian product.

Closed under projection (A ∈ Sn+1 → π(A) ∈ Sn).

{(x , y) ∈ R2 : x < y} ∈ S2.

Corollary
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Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function f : D → T, we have a linear
logical function that approximates to f .

Proof of idea
For instance, let ϕ and ψ be 1st order logic formulas on (x , y) ∈ X × Y .

Φ := {(x , y) ∈ X × Y : ϕ(x , y)},Ψ := {(x , y) ∈ X × Y : ψ(x , y)}.

ϕ ∧ ψ and ϕ ∨ ψ define Φ ∩Ψ and Φ ∪Ψ.
∃xϕ(x , y) defines πY (Φ).
∀xϕ(x , y) defines Y \ πY (X × Y \ Φ).

Corollary

There exists a family L of linear logical functions Li : Di → T, where
Di ⊂ D and Li ≡ f |Di

, such that D \
⋃
i
Di is measure zero set.
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Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function f : D → T, we have a linear
logical function that approximates to f .

Proof of idea
semilinear set of Rn : Finite unions of

{x ∈ Rn : f1(x) = · · · = fk(x), g1(x) > 0, . . . , gl(x) > 0}

with affines fi and gj .
Semilinear sets form o-minimal structure, in which every definable subset
is a finite union of intervals and points.

Corollary

There exists a family L of linear logical functions Li : Di → T, where
Di ⊂ D and Li ≡ f |Di

, such that D \
⋃
i
Di is measure zero set.
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Universality of Linear logical function

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function f : D → T, we have a linear
logical function that approximates to f .

Proof of idea

Lemma

A function f : D → T, where D ⊂ Rn and T is a finite set, is semilinear if
and only if it is a linear logical function.

Using this lemma, we can approximate f with linear logical functions by
constructing approximations of semilinear functions.

Corollary

There exists a family L of linear logical functions Li : Di → T, where
Di ⊂ D and Li ≡ f |Di

, such that D \
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Fuzzy linear logifold

Definition

A fuzzy linear logifold is a tuple (X ,P,U), where (X ,U) be a logifold and

U is a collection of tuples (ρi , ϕi , fi )

ρi : X → [0, 1] describe fuzzy subsets of X with
∑

i ρi ≤ 1X

Ui = {x ∈ X : ρi (x) > 0} be the support of ρi

In classification problems,

X = Rn × T

P : X → [0, 1] describes how likely an element of Rn × T is classified
as ‘yes’

ρi can be ‘generalization performance’, or ‘constant’.
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Example of logifold

f : (0, 1] → {0, 1} be a function defined as

f (x) =
∞∑
n=0

(
(−1)n + 1

2

)
IEn(x)

where En = (1− 2−n, 1− 2−n−1].
The graph of f ⊂ [0, 1)× {0, 1}

with countably many ‘jumps’ or ‘discontinuities’ near at x = 0.
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Practical Aspect : Ensemble Machine Learning

In classification problems, X = Rn × T and each model gi : X → T with
Ui = X . Define Gi : X × T → [0, 1] by g such that Gi (x , t) = (gi (x))t .
Let N be the total number of classifiers.

If ρi =
1
N for any i , then P : X × T → [0, 1] is defined by

P(x , t) =
∑

ρi (x)1ti,0(x)(t)

, where ti ,0(x) = argmaxGi (x , t) denoting ‘the answer of gi ’, and
therefore the system employs majority voting.

If ρi =
1
N for any i , then P : X × T → [0, 1] is defined by

P(x , t) =
∑

Gi (x , t)

, which is simple average.

If ρi (x) =
max gi (x)

N then P(x , t) =
∑
ρi (x)Gi (x , t) be the weighted

average.
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Practical Aspect : Flexible target and Fuzzy Domain

Models Targets

g1 {{c1, c2, c3}, {c4, c5}}
g2 {{c1, c2}, {c3}}
g3 {c1, c2}
g4 {c4, c5}

{{c1, c2, c3}, {c4, c5}}

{{c1, c2}, {c3}} {c4, c5}

{c1, c2}

Certainty = max g(x)

Certain domain = {certainty > α}, α = threshold

Then compute the precisions for each target of g on the Certain domain,
which contribute to ρi (x) along with the target tree.
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Experimental Result 1

Dataset : CIFAR10
Six Simple CNN structure models trained on CIFAR10 (56.45% in average)
ResNet20 structure model trained on CIFAR10 (85.96%)
Simple average : 62.55%
Majority voting provides 58.72%.
Our logifold formulation : 84.86%
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Experimental Result 2

dataset : CIFAR10, MNIST, Fashion MNIST (resized to 32*32*3 pixels)

Filters are models classifying coarse targets. It only classify given data
into three classes ; CIFAR10, MNIST, and Fashion MNIST.

Models only classifying either CIFAR10, MNIST, or Fashion MNIST.

Single model classifying 30 classes : 76.41% in average.
Simple average of models classifying 30 classes : 82.35%
Our logifold formulation : 94.94%.
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